Stability and function of the Sec61 translocation complex depends on the Sss1p tail-anchor sequence.
نویسندگان
چکیده
Sss1p, an essential component of the heterotrimeric Sec61 complex in the ER (endoplasmic reticulum), is a tail-anchored protein whose precise mechanism of action is largely unknown. Tail-anchored proteins are involved in many cellular processes and are characterized by a single transmembrane sequence at or near the C-terminus. The Sec61 complex is the molecular machine through which secretory and membrane proteins translocate into and across the ER membrane. To understand the function of the tail anchor of Sss1p, we introduced mutations into the tail-anchor sequence and analysed the resulting yeast phenotypes. Point mutations in the C-terminal hydrophobic core of the tail anchor of Sss1p were identified that allowed Sss1p assembly into Sec61 complexes, but resulted in diminished growth, defects in co- and post-translational translocation, inefficient ribosome binding to Sec61 complexes, reduction in the stability of both heterotrimeric Sec61 and heptameric Sec complexes and a complete breakdown of ER structure. The underlying defect caused by the mutations involves loss of a stabilizing function of the Sss1p tail-anchor sequence for both the heterotrimeric Sec61 and the heptameric Sec complexes. These results indicate that by stabilizing multiprotein membrane complexes, the hydrophobic core of a tail-anchor sequence can be more than a simple membrane anchor.
منابع مشابه
The transmembrane domain is sufficient for Sbh1p function, its association with the Sec61 complex, and interaction with Rtn1p.
The Sec61 protein translocation complex in the endoplasmic reticulum (ER) membrane is composed of three subunits. The alpha-subunit, called Sec61p in yeast, is a multispanning membrane protein that forms the protein conducting channel. The functions of the smaller, carboxyl-terminally tail-anchored beta subunit Sbh1p, its close homologue Sbh2p, and the gamma subunit Sss1p are not well understoo...
متن کاملSss1p Is Required to Complete Protein Translocon Activation*
Protein translocation across the endoplasmic reticulum membrane occurs at the Sec61 translocon. This has two essential subunits, the channel-forming multispanning membrane protein Sec61p/Sec61α and the tail-anchored Sss1p/Sec61γ, which has been proposed to "clamp" the channel. We have analyzed the function of Sss1p using a series of domain mutants and found that both the cytosolic and transmemb...
متن کاملMolecular architecture of the ER translocase probed by chemical crosslinking of Sss1p to complementary fragments of Sec61p.
The heterotrimeric Sec61p complex is a key component of the protein translocation apparatus of the endoplasmic reticulum membrane. The complex characterized from yeast includes Sec61p, a 10-transmembrane-domain membrane protein which has a direct interaction with Sss1p, a small C-terminal anchor protein. In order to gain some insight into the architecture of this complex we have functionally ex...
متن کاملMycolactone reveals the substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis
Mycolactone is the exotoxin virulence factor produced by Mycobacterium ulcerans, the pathogen responsible for Buruli ulcer. The skin lesions and immunosuppression that are characteristic of this disease result from the action of mycolactone, which targets the Sec61 complex and inhibits the co-translational translocation of secretory proteins into the endoplasmic reticulum. In this study, we inv...
متن کاملMycolactone reveals substrate-driven complexity of Sec61-dependent transmembrane protein biogenesis
Mycolactone is the exotoxin virulence factor produced by Mycobacterium ulcerans, the pathogen responsible for Buruli ulcer. The skin lesions and immunosuppression characteristic of this disease result from the action of mycolactone, which targets the Sec61 complex and inhibits the cotranslational translocation of secretory proteins into the endoplasmic reticulum. In this study, we investigate t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 436 2 شماره
صفحات -
تاریخ انتشار 2011